An inequality for polymatroid functions and its applications
نویسندگان
چکیده
منابع مشابه
An inequality for polymatroid functions and its applications
An integral-valued set function f : 2 7→ Z is called polymatroid if it is submodular, non-decreasing, and f(∅) = 0. Given a polymatroid function f and an integer threshold t ≥ 1, let α = α(f, t) denote the number of maximal sets X ⊆ V satisfying f(X) < t, let β = β(f, t) be the number of minimal sets X ⊆ V for which f(X) ≥ t, and let n = |V |. We show that if β ≥ 2 then α ≤ β , where c = c(n, β...
متن کاملAn inequality for polymatroid functions
An integral-valued set function f : 2V 7→ Z is called polymatroid if it is submodular, non-decreasing, and f(∅) = 0. Given a polymatroid function f and an integer threshold t ≥ 1, let α = α(f, t) denote the number of maximal sets X ⊆ V satisfying f(X) < t, let β = β(f, t) be the number of minimal sets X ⊆ V for which f(X) ≥ t, and let n = |V |. We show that if β ≥ 2 then α ≤ β(log t)/c, where c...
متن کاملOn the generalization of Trapezoid Inequality for functions of two variables with bounded variation and applications
In this paper, a generalization of trapezoid inequality for functions of two independent variables with bounded variation and some applications are given.
متن کاملA companion of Ostrowski's inequality for functions of bounded variation and applications
A companion of Ostrowski's inequality for functions of bounded variation and applications are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2003
ISSN: 0166-218X
DOI: 10.1016/s0166-218x(02)00455-9